Solutions-Class-11-Science-Physics-Chapter-2-Mathematical Methods-Maharashtra Board

Mathematical Methods

Maharashtra Board-Class-11-Science-Physics-Chapter-2

Solutions

Question 1. Choose the correct option.

(i) The resultant of two forces 10 N and 15 N acting along + x and - x-axes respectively, is

(A) 25 N along + x-axis

(B) 25 N along - x-axis

(C) 5 N along + x-axis

(D) 5 N along - x-axis

Answer :

(D) 5 N along - x-axis

(ii) For two vectors to be equal, they should have the

(A) same magnitude

(B) same direction

(C) same magnitude and direction

(D) same magnitude but opposite direction

Answer :

(C) same magnitude and direction

(iii) The magnitude of scalar product of two unit vectors perpendicular to each other is

(A) zero

(B) 1

(C) -1

(D) 2

Answer :

(A) zero

(iv) The magnitude of vector product of two unit vectors making an angle of 60° with each other is

(A) 1

(B) 2

(C) 3/2

(D)  \(\sqrt{3}/2\)

Answer :

(D) \(\sqrt{3}/2\)

(v) If \(\vec{A},\vec{B}\) and \(\vec{C}\)   are three vectors, then which of the following is not correct?

(A) \(\vec{A}.(\vec{B}+\vec{C})\) = \(\vec{A}.\vec{B}+\vec{A}.\vec{C}\)

(B) \(\vec{A}.\vec{B}\) = \(\vec{B}.\vec{A}\)

(C) \(\vec{A}×\vec{B}\) = \(\vec{B}×\vec{A}\)

(D) \(\vec{A}×(\vec{B}+\vec{C})\) = \(\vec{A}×\vec{B}+\vec{B}×\vec{C}\)

Answer :

(C) \(\vec{A}×\vec{B}\) = \(\vec{B}×\vec{A}\)

Question 2. Answer the following questions.

(i) Show that \(\vec{a}=\frac{i-j}{\sqrt{2}}\) is a unit vector.

Answer :

a = |\(\vec{a}\)| = \(\sqrt{(\frac{1}{\sqrt{2}})^2+(-\frac{1}{\sqrt{2}})^2}\)

= \(\sqrt{\frac{1}{2} +\frac{1}{2}}\) = 1

Hence, \(\vec{a}\)  is a unit vector.

(ii) If \(\vec{v_1}\) = \(3\hat{i} + 4\hat{j} + k\) and \(\vec{v_2}\) = \(\hat{i} - \hat{j} - k\) , determine the magnitude of \(\vec{v_1}+\vec{v_2}\)

Answer :

\(\vec{v_1}+\vec{v_2}\) = \((3\hat{i} + 4\hat{j} + k) + (\hat{i} - \hat{j} - k)\)

= (3+1)\(\hat{i}\) + (4 - 1)\(\hat{j}\) + + (1 - 1)\(\hat{k}\)

= 4\(\hat{i}\) + 3\(\hat{j}\)

∴ |\(\vec{v_1}+\vec{v_2}\)| = |4\(\hat{i}\) + 3\(\hat{j}\)| = \(\sqrt{(4^2+3^2)}\) = 5

5 is the required magnitude

(iii) For \(\vec{v_1}\)  = 2\(\hat{i}\)   3\(\hat{j}\)   and \(\vec{v_2}\)   = 6\(\hat{i}\)  + 5\(\hat{j}\) , determine the magnitude and direction of \(\vec{v_1}+\vec{v_2}\)

Answer :

\(\vec{v}\) = \(\vec{v_1}+\vec{v_2}\)  = (2\(\hat{i}\)  − 3\(\hat{j}\) ) + (−6\(\hat{i}\)  + 5\(\hat{j}\) )

= (2 - 6)\(\hat{i}\) + (-3 + 5)\(\hat{j}\)

= −4\(\hat{i}\) + 2\(\hat{j}\)  = vx\(\hat{i}\) + vy\(\hat{i}\)

∴ |\(\vec{v}\)| = \(\sqrt{(-4)^2+(2)^2}\) = \(\sqrt{(16+4)}\)

= \(\sqrt{20}\) = 2\(\sqrt{5}\)

tan θ = vy/vx = 2/−4 = −1/2  = tan (180o − α) = −tan α

∴ α = tan−1\((\frac{1}{2})\) = 26o34’

∴ θ = 180o − 26o34’ = 153o26’

\(\vec{v_1}+\vec{v_2}\) has a magnitude of 2\(\sqrt{5}\)  and makes an angle of θ = tan−1\((\frac{1}{2})\) = 153o26’ with the positive x-axis

(iv) Find a vector which is parallel to \(\vec{v}=\hat{i}-2\hat{j}\) and has a magnitude 10.

Answer :

Let  \(\vec{u}\) be a vector of magnitude 10 and parallel to \(\vec{v}=\hat{i}-2\hat{j}\)

∴  \(\vec{u}=λ\vec{v}\), where the scalar multiple λ = u/v

v = |\(\vec{v}\)| = \(\sqrt{v_x^2+v_y^2}\) = \(\sqrt{(1)^2+(-2)^2}\) = \(\sqrt{5}\)

∴ λ = \(\frac{10}{\sqrt{5}}=2\sqrt{5}\) as u = 10

∴ \(\vec{u}\) = \(2\sqrt{5}(\hat{i}-2\hat{j})\)  = \(2\sqrt{5}\hat{i}-4\sqrt{5}\hat{j}\) is the required vector.

(v) Show that vectors \(\vec{a}\)  = 2\(\hat{i}\) + 5\(\hat{j}\) − 6\(\hat{k}\)  and \(\vec{b}\)  = \(\hat{i}\) + \(\frac{5}{2}\hat{j}\) − 3\(\hat{k}\)  are parallel.

Answer :

\(\vec{a}\) = 2\(\hat{i}\) + 5\(\hat{j}\) − 6\(\hat{k}\) = \(2(\hat{i}\) + \(\frac{5}{2}\hat{j}\) − 3\(\hat{k})\) = \(2\vec{b}\)

Since \(\vec{a}\) is scalar multiple of \(\vec{b}\) the vectors are parallel

Question 3. Solve the following problems.

(i) Determine \(\vec{a}\) x \(\vec{b}\), given \(\vec{a}\)  = 2\(\hat{i}\) + 3\(\hat{j}\)  and \(\vec{b}\) = 3\(\hat{i}\) + 5\(\hat{j}\).

Answer :

\(\vec{a}\)  = 2\(\hat{i}\) + 3\(\hat{j}\), \(\vec{b}\) = 3\(\hat{i}\) + 5\(\hat{j}\)

\(\vec{a}\) x \(\vec{b}\)= (2\(\hat{i}\) + 3\(\hat{j}\) ) x (3\(\hat{i}\) + 5\(\hat{j}\))

= 2\(\hat{i}\)  x 3\(\hat{i}\) + 2\(\hat{i}\) x 5\(\hat{j}\) + 3\(\hat{j}\) x 3\(\hat{i}\) + 3\(\hat{j}\) x 5\(\hat{j}\)

= 0 + 10\(\hat{k}\)  − 9\(\hat{k}\) + 0 = \(\hat{k}\)

(ii) Show that vectors \(\vec{a}\) = 2\(\hat{i}\) + 3\(\hat{j}\) + 6\(\hat{k}\), \(\vec{b}\) = 3\(\hat{i}\) − 6\(\hat{j}\) + 2\(\hat{k}\) and \(\vec{c}\) = 6\(\hat{i}\) + 2\(\hat{j}\) − 3\(\hat{k}\)   are mutually perpendicular.

Answer :

\(\vec{a}\) = 2\(\hat{i}\) + 3\(\hat{j}\) + 6\(\hat{k}\) \(\vec{b}\) = 3\(\hat{i}\) − 6\(\hat{j}\) + 2\(\hat{k}\), \(\vec{c}\) = 6\(\hat{i}\) + 2\(\hat{j}\) − 3\(\hat{k}\)

a ≠ 0,  b ≠ 0, c ≠ 0

\(\vec{a}\).\(\vec{b}\) = axbx + ayby + azbz = (2)(3) + (3)(−6) + (6)(2) = 6 – 18 + 12 = 0

∴ \(\vec{b}\)⊥\(\vec{a}\)

\(\vec{a}\).\(\vec{c}\) = axcx + aycy + azcz = (2)(6) + (3)(2) + (6)( −3) = 12 + 6 – 18  = 0

∴ \(\vec{c}\)⊥\(\vec{a}\)

\(\vec{b}\).\(\vec{c}\) = bxcx + bycy + bzcz = (3)(6) + (−6)(2) + (2)( −3) = 18 – 12 – 6  = 0

∴ \(\vec{c}\)⊥\(\vec{b}\)

It follows that \(\vec{a}\), \(\vec{b}\) and \(\vec{c}\) are mutually perpendicular.

(iii) Determine the vector product of \(\vec{v_1}\) = 2\(\hat{i}\) + 3\(\hat{j}\) − \(\hat{k}\)  and \(\vec{v_2}\)  = \(\hat{i}\) + 2\(\hat{j}\) − 3\(\hat{k}\) 

Answer :

\(\vec{v_1}\) = 2\(\hat{i}\) + 3\(\hat{j}\) − \(\hat{k}\), \(\vec{v_2}\)  = \(\hat{i}\) + 2\(\hat{j}\) − 3\(\hat{k}\)

\(\vec{v_1}\) x \(\vec{v_2}\) = \(\begin{vmatrix} \hat{i} & \hat{j}& \hat{k}\cr 2 & 3 & -1\cr 1 & 2 & -3 \end{vmatrix}\)

= \(\hat{i}\)[(3)( −3) − (−1)(2)] + \(\hat{j}\)[(−1)(1) − (2)( −3)] + \(\hat{k}\)[(2)(2) − (3)(1)]

= -7\(\hat{i}\) + 5\(\hat{j}\)  + \(\hat{k}\)

(iv) Given \(\vec{v_1}\)   = 5\(\hat{i}\) + 2\(\hat{j}\)  and \(\vec{v_2}\)  = a\(\hat{i}\) − 6\(\hat{i}\)  are perpendicular to each other, determine the value of a.

Answer :

\(\vec{v_1}\)   = 5\(\hat{i}\) + 2\(\hat{j}\) perpendicular to \(\vec{v_2}\)  = a\(\hat{i}\) − 6\(\hat{i}\)

\(\vec{v_1}\).\(\vec{v_2}\)   = 5a + (2)(−6) = 0

5a = 12

∴ a = 12/5 = 2.4

(v) Obtain derivatives of the following functions:

(i) x sin x (ii) x4+cos x (iii) \(\frac{x}{sin\,x}\)

Answer :

(i) \(\frac{d}{dx}\)(x sin x) = \(x(\frac{d\,sin\,x}{dx})+sin\,x\frac{dx}{dx}\)(x sin x)  = x cos x + sin x

(i) \(\frac{d}{dx}\)(x sin x)(x4+cos x) = 4x2 sin x

(iii) \(\frac{d}{dx}\frac{x}{sin\,x}\) = \(\frac{1}{sin\,x}.\frac{dx}{dx}-\frac{1}{sin^2x}.x\frac{d(sin\,x)}{dx}\) = \(\frac{1}{sin\,x}-\frac{x\,cox\,x}{sin^2x}\)

(vi) Using the rule for differentiation for quotient of two functions, prove that \(\frac{d}{dx}(\frac{sin\,x}{cos\,x})\) = sec2x

Answer :

\(\frac{d}{dx}(\frac{sin\,x}{cos\,x})\) = \(\frac{1}{cos\,x}.\frac{d\,sin\,x}{dx}-\frac{1}{cos^2x}.sin\,x\frac{d}{dx}(cox\,x)\)

= \(\frac{cos^2x}{cos\,x}+\frac{sin^2x}{cos^2x}\) = \(1+\frac{sin^2x}{cos^2x}\)

= \(\frac{cos^2x+sin^2x}{cos^2x}\) = \(\frac{1}{cos^2x}\)  sec2x

(vii) Evaluate the following integral:

(i) \(\int_{0}^{π/2} sin\,x\,dx\) (ii) \(\int_{1}^{5} x\,dx\) 

Answer :

(i) \(\int_{0}^{π/2} sin\,x\,dx\) = − cos x \(|_o^{π/2}\)

= − cos (π/2) + cos 0 = 0 + 1 = 1

(ii) \(\int_{1}^{5} x\,dx\)  = \(\frac{x^2}{2}|_1^5\)

= \(\frac{5^2}{2}-\frac{1^2}{2}\)

= \(\frac{25-1}{2}\) = 24/2 = 12

Click on below links to get PDF from store

Rs 16

-Kitabcd Academy Offer-

Buy Notes(Rs.10)+ Solution(Rs.10) PDF of this chapter
Price : Rs.20 / Rs.16

Click on below button to buy PDF in offer (20% discount)

PDF :  Class 11th-Physics-Chapter-2-Mathematical Methods-Text Book

PDF : Class 11th-Physics-Chapter-2-Mathematical Methods- Notes

PDF : Class 11th-Physics-Chapter-2-Mathematical Methods-Solution

All Chapters Notes-Class-11-Science-Physics-(14 PDF)

Useful Links

Main Page : – Maharashtra Board Class 11th-Physics  – All chapters notes, solutions, videos, test, pdf.

Previous Chapter : Chapter 1: Units and MeasurementsOnline Solutions

Next Chapter : Chapter 3: Motion in a Plane  – Online Solutions

Leave a Reply

Write your suggestions, questions in comment box

Your email address will not be published. Required fields are marked *

We reply to valid query.