Solutions-Part-1-Class-10-Mathematics-1-Chapter-2-Quadratic Equations-Maharashtra Board

Quadratic Equations

Class-10-Mathematics-1-Chapter-2-Maharashtra Board

Solutions-Part-1

Solutions Part-1

  • Practice Set 2.1
  • Practice Set 2.2
  • Practice Set 2.3

Solutions Part-2

  • Practice Set 2.4
  • Practice Set 2.5
  • Practice Set 2.6
Practice Set 2.1

Question 1. Write any two quadratic equations.

Solution :

(Here students has to write any two equations in the form ax2 + bx + c = 0, a ≠  0)

(i) x2 − 8x + 5 = 0  (ii) 3y2 = 27.

Question 2. Decide which of the following are quadratic equations.

(1) x2 + 5 x 2 = 0

Solution :

In given equation, x is the only variable with highest index 2.

the given equation is a quadratic equation

(2) y2 = 5 y 10

Solution :

In given equation, y is the only variable with highest index 2.

the given equation is a quadratic equation

(3) y2 + \(\frac{1}{y}\) = 2

Solution :

Multiplying the equation by y,

y3 + 1 = 2y  

∴ y3 − 2y + 1 = 0

In this equation, the highest index of variable y is 3 and not 2.

the given equation is not a quadratic equation.

(4) x + \(\frac{1}{x}\)   = −2

Solution :

Multiplying the equation by x,

x2 + 1= −2x 

∴ x2 + 2x + 1 = 0.

In this equation, x is the only variable with highest index 2.

the given equation is a quadratic equation.

(5) (m + 2) (m 5) = 0

Solution :

(m + 2) (m− 5) = 0

 m(m−5) + 2(m−5) = 0

 m2−5m + 2m − 10 = 0

 m2−3m−10 = 0

In this equation, m is the only variable with highest index 2.

 the given equation is a quadratic equation.

(6) m3 + 3 m2 2 = 3m3

Solution :

m3 + 3 m2 − 2 = 3m3

 m3 −3m3 + 3m2 − 2 = 0

 −2m3 + 3m2 − 2 = 0

In this equation, the highest index of the variable m is 3 and not 2.

the given equation is not a quadratic equation.

Question 3. Write the following equations in the form ax2 + bx + c = 0, then write the values of a, b, c for each equation.

(1) 2y = 10 y2

Solution :

2y = 10 − y2

y2 + 2y − 10 = 0

Comparing with the standard form ax2 + bx + c = 0

a = 1, b = 2, c = 10.

The required equation is y2 + 2y − 10 = 0,

Values of a, b, c is, a = 1, b = 2, c = 10.

(2) (x 1)2 = 2 x + 3

Solution :

(x 1)2 = 2 x + 3

∴ x2 − 2x + 1−2x−3 = 0

∴ x2 − 4x−2 = 0

Comparing with the standard form ax2 + bx + c = 0

a = 1, b = −4, c = −2.

The required equation is x2 − 4x−2 = 0

Values of a, b, c is,  a = 1, b = −4, c = −2.

(3) x2 + 5x = −(3 x)

Solution :

x2 + 5x = −(3 x)

 x2 + 5x = −3 + x 

∴ x2 + 5x − x + 3 = 0

 x2 + 4x + 3 = 0

Comparing with the standard form ax2 + bx + c = 0

a = 1, b = 4, c = 3.

The required equation is  x2 + 4x + 3 = 0

Values of a, b, c is,  a = 1, b = 4, c = 3.

(4) 3m2 = 2 m2 9

Solution :

3m2 = 2 m2 − 9

 3m2−2m2 + 9 = 0

∴ m2 + 0m + 9 = 0

Comparing with the standard form ax2 + bx + c = 0

a =1, b = 0, c = 9.

The required equation is m2 + 0m + 9 = 0

Values of a, b, c is,  a = 1, b = 0, c = 9.

(5) P (3 + 6p) = −5

Solution :

p(3 + 6p) = − 5

 3p + 6p2 + 5 = 0

 6p2 + 3p + 5 = 0

Comparing with the standard form ax2 + bx + c = 0

a = 6, b = 3, c = 5.

The required equation is 6p2 + 3p + 5 = 0

Values of a, b, c is,  a = 6, b = 3, c = 5.

(6) x2 9 = 13

Solution :

x2 − 9 = 13

 x2 − 9 − 13 = 0

 x2 − 22 = 0

 ∴ x2 + 0x −22 = 0

Comparing with the standard form ax2 + bx + c = 0

a =1, b = 0, c = −22.

The required equation is x2 + 0x −22 = 0

Values of a, b, c is,  a =1, b = 0, c = −22.

Question 4. Determine whether the values given against each of the quadratic equation are the roots of the equation.

(1) x2 + 4x 5 = 0 , x = 1, 1

Solution :

Substituting x = 1,

LHS = (1)2 + 4(1) − 5

         = 1 + 4 − 5

         = 5 − 5 = 0 = RHS

∴ x = 1 is the root of the given quadratic equation.

Substituting x = − 1,

LHS = (−1)2 + 4(−1)−5

         = 1 − 4 − 5

          = 1 − 9 = − 8 ≠ RHS

∴ x = − 1 is not the root of the given quadratic equation.

 1 is the root; −1 is not the root.

 (2) 2m2 5m = 0 , m = 2, \(\frac{5}{2}\)

Solution :

Substituting m = 2,

LHS = 2(2)2 − 5(2)

        = 2(4) − 10

         = 8 − 10

         = − 2 ≠ RHS

 ∴ m = 2 is not the root of the given quadratic equation.

Substituting m = \(\frac{5}{2}\),

LHS = \(2(\frac{5}{2})^2\)  − \(5(\frac{5}{2})\)

         = \(\frac{25}{2}-\frac{25}{2}\) = 0 = RHS

∴ m = \(\frac{5}{2}\) is the root of the given quadratic equation

2 is not the root; \(\frac{5}{2}\),  is the root.

Question 5. Find k if x = 3 is a root of equation kx2 10x + 3 = 0 .

Solution :

x = 3 is the root of the given equation

Substituting x = 3 in the given equation,

k(3)2 − 10(3) + 3 = 0

∴ 9k − 30 + 3 = 0

∴ 9k − 27 = 0

∴9k = 27

∴ k = 27/9 = 3

Answer : The value of k is 3

Question 6. One of the roots of equation 5m2 + 2m + k = 0 is \(-\frac{7}{5}\),  . Complete the following activity to find the value of ’k’.

Solution :

[\(-\frac{7}{5}\)] is a root of quadratic equation 5m2 + 2m + k = 0

∴ Put m = [\(-\frac{7}{5}\)] in the equation.

5 × \([-\frac{7}{5}]^2\)  + 2 × [\(-\frac{7}{5}\)] + k = 0

[\(-\frac{49}{25}\) ]  + [\(-\frac{14}{5}\) ] + k = 0

[7] + k = 0

k = [−7]

(In the question, boxes [−−] were to be fi1led.)

Practice Set 2.2

Question. Solve the following quadratic equations by factorisation.

(1) x2 − 15 x + 54 = 0

Solution :

x2 − 15 x + 54 = 0

∴ x2 − 9x − 6x + 54 = 0         

∴ x(x−9)− 6(x−9) = 0

∴ (x−9)(x−6)=0

∴ x−9 = 0  or  x−6 = 0

∴ x = 9 or x = 6

Answer is : 9, 6 are the roots of the given quadratic equation.

(2) x2  + x − 20 = 0

Solution :

x+ x − 20 = 0

∴ x2 + 5x − 4x − 20 = 0

∴ x(x + 5) − 4(x + 5) = 0

∴ (x + 5)(x − 4) = 0

 ∴ x + 5 = 0 or  x − 4 = 0

∴ x = −5 or x = 4

Answer is : −5, 4 are the roots of the given quadratic equation.

(3) 2y2 + 27y + 13 = 0

Solution :

2y2 + 27y + 13 = 0              …(..a × c = 2 × 13 = 26 …26 = 26 × 1 …b = 27 = 26 + 1)

∴ 2y2 + 26y + y + 13 = 0 

∴ 2y(y + 13) + 1(y+13) = 0

∴  (y + 13)(2y + 1) = 0

∴ y + 13 = 0 or 2y + 1 = 0

∴ y = −13 or 2y = −1 ∴ y = \(-\frac{1}{2}\)

Answer is : − 13, \(-\frac{1}{2}\)  are the roots of the given quadratic equation

(4) 5m2 = 22 m + 15

Solution :

5m2 = 22 m + 15                       

∴ 5m2−22m−15 = 0                    (..a x c = 5 × (−15) = −75 = −25 × 3, −25 + 3 = 22 =b)

∴.5m2−25m + 3m −l5 = 0

∴ 5m(m−5) + 3(m−5) = 0

∴ (m−5)(5m + 3) = 0 _

∴ m−5 = 0 or 5m + 3 = 0

∴ m = 5 or 5m = −3  ∴ m = \(-\frac{3}{5}\)

Answer is :  5, \(-\frac{3}{5}\)  are the roots of the given quadratic equation.

(5) 2x2 − 2 x + \(\frac{1}{2}\)  = 0

Solution :

2x2 − 2 x + \(\frac{1}{2}\)  = 0

∴ 2x2 −x −x + \(\frac{1}{2}\) = 0                      ….( a × c = 2 × \(\frac{1}{2}\) = 1 = −1 × −1 … b = −1 −1 = −2)

∴ x(2x−1) − \(\frac{1}{2}\)(2x−1) = 0

 ∴  (2x−1) (x−\(\frac{1}{2}\) ) = 0

∴ 2x−1 = 0 or x − \(\frac{1}{2}\) = 0

∴ 2x = 1 or x = \(\frac{1}{2}\)

∴ x = \(\frac{1}{2}\) or x = \(\frac{1}{2}\)

Answer is : \(\frac{1}{2}\), \(\frac{1}{2}\) are the roots of the given quadratic equation.

[Note : Here, both the roots are the same.]

(6) 6x − \(\frac{2}{x}\)  = 1

Solution :

6x \(\frac{1}{2}\) = 1

Multiplying each term of the equation by x,

6x2 − 2 = x

6x2− x − 2 = 0

∴ 6x2 − 4x + 3x − 2 = 0               ….( a × c =  6 × (−2) = −12 = −4 × 3 ..b = −4 + 3 = −1)

∴ 2x(3x−2) + 1(3x−2) = 0

∴ (3x−2)(2x+ 1) = 0

 ∴3x−2 = 0 or 2x + 1 = 0

∴3x = 2 or 2x = −1

∴ x = \(\frac{2}{3}\) or x = \(-\frac{1}{2}\)

Answer is: \(\frac{2}{3}\), \(-\frac{1}{2}\)  are the roots of the given quadratic equation.

(7) \(\sqrt{2}\)x2  + 7 x + 5\(\sqrt{2}\)  = 0 to solve this quadratic equation by factorisation, complete the following activity.

Solution :

\(\sqrt{2}\)x2  + 7 x + 5\(\sqrt{2}\)  = 0

\(\sqrt{2}\)x2 + [5x] + [2x] + 5\(\sqrt{2}\)  = 0

x( \(\sqrt{2}\)x + 5) + \(\sqrt{2}\)(\(\sqrt{2}\)x + 5) = 0

( \(\sqrt{2}\)x + 5)(x + \(\sqrt{2}\) ) = 0

(\(\sqrt{2}\)x + 5) = 0 or (x + \(\sqrt{2}\) ) = 0

x = \(-\frac{5}{\sqrt{2}}\) or x = \(-\sqrt{2}\)

∴ \(-\frac{5}{\sqrt{2}}\) and \(-\sqrt{2}\)  are roots of the equation.

(8) 3x2 − 2\(\sqrt{6}\)x + 2 = 0

Solution :

3x2 − 2\(\sqrt{6}\)x + 2 = 0

∴ 3x2 − \(\sqrt{6}\)x − \(\sqrt{6}\)x + 2 = 0   (a × c =  3 × 2 = 6 = −   ..b =  )

∴ 3x2 − \(\sqrt{3}\)x ×\(\sqrt{2}\) − \(\sqrt{3}\)x × \(\sqrt{2}\) + \(\sqrt{2}\) × \(\sqrt{2}\)  = 0   

∴ \(\sqrt{3}\)x(\(\sqrt{3}\)x − \(\sqrt{2}\)) − \(\sqrt{2}\)(\(\sqrt{3}\)x − \(\sqrt{2}\)) = 0

∴ (\(\sqrt{3}\)x − \(\sqrt{2}\))(\(\sqrt{3}\)x − \(\sqrt{2}\)) = 0

∴ \(\sqrt{3}\)x − \(\sqrt{2}\) = 0 or \(\sqrt{3}\)x − \(\sqrt{2}\) =0

x = \(\frac{\sqrt{2}}{\sqrt{3}}\)

Here, both the roots are the same.

Answer is : \(\frac{\sqrt{2}}{\sqrt{3}}\)   are the roots of the given quadratic equation.

(9) 2m (m − 24) = 50

Solution :

2m(m − 24) = 50.

∴ 2m2 −48m − 50 = 0

∴ m2 − 24m − 25 = 0      …..(Dividing each term of the equation by 2)

∴ m2 − 25m + m − 25 = 0

∴ m(m − 25) + 1(m − 25) = 0

 ∴  (m − 25)(m + 1) = 0

∴ m − 25 = 0 or m + 1 = 0

∴ m = 25 or m = −1

Answer is : 25, − 1 are the roots of the given quadratic equation.

(10) 25m2 = 9

Solution :

25m2 = 9

∴ 25m2 − 9 = 0

∴ (5m)2 − (3)2 = 0

∴ (5m + 3)(5m − 3) = 0

∴ 5m + 3 = 0 or 5m − 3 = 0

∴ 5m = −3 or 5m = 3

∴ m = \(-\frac{3}{5}\) or m = \(\frac{3}{5}\)

Answer is : \(-\frac{3}{5}\), \(\frac{3}{5}\) are the roots of the given quadratic equation.

(11) 7m2 = 21m

Solution :

7m2 = 21m

∴ 7m2 − 21m = 0

∴ 7m(m − 3) = 0

∴ 7m = 0 or m−3 = 0

∴ m = 0 or m = 3

Answer is : 0, 3 are the roots of the given quadratic equation.

(12) m2 − 11 = 0

Solution :

m2 − 11 = 0

∴ m2 − \((\sqrt{11})^2\)  = 0

∴ (m + \(\sqrt{11}\) ) (m − \(\sqrt{11}\) ) = 0

∴ m + \(\sqrt{11}\) = 0 or m − \(\sqrt{11}\)  = 0

∴ m = − \(\sqrt{11}\)  or m =   \(\sqrt{11}\) 

Answer is : \(-\sqrt{11}\), \(\sqrt{11}\)  are the roots of the given quadratic equation.

Practice Set 2.3

Solve the following quadratic equations by completing the square method.

(1) x2 + x − 20 = 0

Solution :

x2 + x − 20 = 0

Considering the first two terms on LHS, let’s find the third suitable square term to make the polynomial a perfect square.

Comparing x2 + x with x2 + 2xy,

2xy = x  ∴ 2y = 1 ∴ y = \(\frac{1}{2}\)  ∴ y2 = \(\frac{1}{4}\)

∴ x2 + x + \(\frac{1}{4}\) is a perfect square trinomial

x2 + x−20 = 0

∴ x2 + x + \(\frac{1}{4}\) − \(\frac{1}{4}\) − 20 = 0

∴ \((x +\frac{1}{2})^2-(\frac{1}{4}+20)\) = 0

∴ \((x +\frac{1}{2})^2-(\frac{1+80}{4})\) = 0

∴ \((x +\frac{1}{2})^2-(\frac{81}{4})\) = 0

∴ \((x +\frac{1}{2})^2-(\frac{9}{2})^2\) = 0

∴ \((x +\frac{1}{2}+\frac{9}{2})(x +\frac{1}{2}-\frac{9}{2})\) = 0

∴ \((x +\frac{1+9}{2})(x +\frac{1-9}{2})\) = 0

∴ \((x +\frac{10}{2})(x +\frac{-8}{2})\) = 0

∴ ( x + 5)(x − 4) = 0

∴ x + 5 = 0 or x − 4 = 0

∴ x = − 5 or x = 4

Answer is : −5, 4 are the roots of the given quadratic equation.

(2) x2 + 2x − 5 = 0

Solution :

x2 + 2x − 5 = 0

Considering the first two terms on LHS, let’s find the third suitable square term to make the polynomial a perfect square.

Comparing x2 + 2x with x2 + 2xy,

2xy = 2x  ∴ y = 1 ∴ y2 = 1

 x2 + 2x + 1 is a perfect square trinomial.

x2 + 2x − 5 = 0

∴ x2 + 2x + 1 − 1−5 = 0

∴ (x + 1)2 − 6 = 0

∴ (x + 1)2−( )2 = 0

∴(x + 1 + \(\sqrt{6}\))(x + 1− \(\sqrt{6}\)) = 0

∴ x + 1 + \(\sqrt{6}\) = 0 or x + 1− \(\sqrt{6}\) = 0

∴x = −1− \(\sqrt{6}\)  or x = −1 + \(\sqrt{6}\)

Answer is : −1−\(\sqrt{6}\) , −1 + \(\sqrt{6}\)   are the roots of the given quadratic equation.

(3) m2 − 5m = −3

Solution :

m2 − 5m = − 3

 m2 − 5m + 3 = 0            ….(Standard form)

Considering the first two terms on LHS, let’s find the third suitable square term to make the polynomial a perfect square.

Comparing m2 − 5m with m2 − 2mn,

− 2mn = − 5m

∴ n = \(\frac{5}{2}\) ∴ n2 = \(\frac{25}{4}\)

 m2 − 5m + \(\frac{25}{4}\) is a perfect square trinomial.

m2 − 5m + 3 = 0

m2 − 5m + \(\frac{25}{4}-\frac{25}{4}\) + 3 = 0

∴ \((m-\frac{5}{2})^2-(\frac{25}{4}-3)\) = 0

∴ \((m-\frac{5}{2})^2-(\frac{25-12}{4})\) = 0

∴ \((m-\frac{5}{2})^2-(\frac{13}{4})\) = 0

∴ \((m-\frac{5}{2})^2-(\frac{\sqrt{13}}{2})^2\) = 0

∴ \((m-\frac{5}{2} +\frac{\sqrt{13}}{2})(m-\frac{5}{2} -\frac{\sqrt{13}}{2})\) = 0

∴ \((m-\frac{5}{2} +\frac{\sqrt{13}}{2})\) = 0 or \((m-\frac{5}{2} -\frac{\sqrt{13}}{2})\)  = 0

∴ m = \(\frac{5}{2} -\frac{\sqrt{13}}{2}\)  or m = \(\frac{5}{2} +\frac{\sqrt{13}}{2}\)

∴ m = \(\frac{5-\sqrt{13}}{2}\)  or m = \(\frac{5+\sqrt{13}}{2}\)

Answer is : \(\frac{5-\sqrt{13}}{2}\), \(\frac{5+\sqrt{13}}{2}\)  are the roots of the given quadratic equation.

(4) 9y2 − 12 y + 2 = 0

Solution :

9y2 − 12 y + 2 = 0

It is convenient to make the coefficient of quadratic term 1

∴ y2 − \(\frac{12y}{9} +\frac{2}{9}\) = 0                 …. (Dividing by 9)

∴ y2 − \(\frac{4y}{3} +\frac{2}{9}\) = 0                 

Comparing y2 − \(\frac{4y}{3}\) with y2 − 2yz,

−2yz = − \(\frac{4y}{3}\)   ∴ z = \(\frac{2}{3}\)  ∴ z2 = \(\frac{4}{9}\)

 ∴ y2 − \(\frac{4y}{3}\) + \(\frac{4}{9}\) is a perfect square trinomial.

y2 − \(\frac{4y}{3} +\frac{2}{9}\) = 0                 

∴ y2 − \(\frac{4y}{3} +\frac{4}{9}-\frac{4}{9}+\frac{2}{9}\)  = 0                 

∴ \((y-\frac{2}{3})^2-(\frac{4}{9}-\frac{2}{9}\) = 0

∴ \((y-\frac{2}{3})^2-(\frac{4-2}{9})\) = 0

∴ \((y-\frac{2}{3})^2-(\frac{2}{9})\) = 0

∴ \((y-\frac{2}{3})^2-(\frac{\sqrt{2}}{3})^2\) = 0

∴ \((y-\frac{2}{3}+\frac{\sqrt{2}}{3})(y-\frac{2}{3}-\frac{\sqrt{2}}{3})\) = 0

∴ \((y-\frac{2}{3}+\frac{\sqrt{2}}{3})\) = 0 or \((y-\frac{2}{3}-\frac{\sqrt{2}}{3})\) = 0

∴ y = \(\frac{2}{3}-\frac{\sqrt{2}}{3}\)  or y = \(\frac{2}{3}+\frac{\sqrt{2}}{3}\)

∴ y = \(\frac{2-\sqrt{2}}{3}\)  or y = \(\frac{2+\sqrt{2}}{3}\)

Answer is : \(\frac{2-\sqrt{2}}{3}\), \(\frac{2+\sqrt{2}}{3}\) are the roots of the given quadratic equation.

(5) 2y2 + 9y + 10 = 0

Solution :

2y2 + 9y + 10 = 0

∴ y2 + \(\frac{9}{2}\)y + 5 = 0        ……(Dividing by 2)

Comparing y2 + \(\frac{9}{2}\)y with y2 + 2yz,

2yz = \(\frac{9}{2}\)y  ∴ z = \(\frac{9}{4}\), z2 = \(\frac{81}{16}\)

∴ y2 + \(\frac{9}{2}\)y + \(\frac{81}{16}\) is a perfect square trinomial.

y2 + \(\frac{9}{2}\)y + 5 = 0  

∴ y2 + \(\frac{9}{2}\)y + \(\frac{81}{16}\) - \(\frac{81}{16}\) + 5 = 0        

∴ \((y+\frac{9}{4})^2-(\frac{81}{16}+5)\) = 0

∴ \((y+\frac{9}{4})^2-(\frac{81-80}{16})\) = 0

∴ \((y+\frac{9}{4})^2-(\frac{1}{16})\) = 0

∴ \((y+\frac{9}{4})^2-(\frac{1}{4})^2\) = 0

∴ \((y+\frac{9}{4}+\frac{1}{4})(y+\frac{9}{4}-\frac{1}{4})\) = 0

∴ \((y+\frac{9+1}{4})(y+\frac{9-1}{4})\) = 0

∴ \((y+\frac{10}{4})(y+\frac{8}{4})\) = 0

∴ \(y+\frac{10}{4}\) = 0 or \(y+\frac{8}{4}\) = 0

∴ y = \(-\frac{10}{4}\) = 0 or y= \(-\frac{8}{4}\) 

∴ y = \(-\frac{5}{2}\) or y = −2

Answer is : \(-\frac{5}{2}\), −2 are the roots of the given quadratic equation.

(6) 5x2 = 4x + 7

Solution :

5x2 = 4x + 7

∴ 5x2 − 4x − 7 = 0

x2 − \(\frac{4}{5}\)x − \(\frac{7}{5}\) = 0     …. (Dividing by 5)

Comparing x2 − \(\frac{4}{5}\)x with x2 − 2xy,

− 2xy = − \(\frac{4}{5}\)x  ∴ y = \(\frac{2}{5}\), ∴ y2 = \(\frac{4}{25}\)

x2 − \(\frac{4}{5}\)x + \(\frac{4}{25}\)  is a perfect square trinomial.

x2 − \(\frac{4}{5}\)x − \(\frac{7}{5}\)

∴ x2 − \(\frac{4}{5}\)x + \(\frac{4}{25}\) - \(\frac{4}{25}\)  − \(\frac{7}{5}\) = 0    

∴ \((x-\frac{2}{5})^2-(\frac{4}{25}+\frac{7}{5})\) = 0

∴ \((x-\frac{2}{5})^2-(\frac{4+35}{25})\) = 0

∴ \((x-\frac{2}{5})^2-(\frac{39}{25})\) = 0

∴ \((x-\frac{2}{5})^2-(\frac{\sqrt{39}}{5})^2\) = 0

∴ \((x-\frac{2}{5}+\frac{\sqrt{39}}{5})(x-\frac{2}{5}-\frac{\sqrt{39}}{5})\)  = 0

∴ \(x-\frac{2}{5}+\frac{\sqrt{39}}{5}\) = 0 or \(x-\frac{2}{5}-\frac{\sqrt{39}}{5}\) = 0

∴ x = \(\frac{2}{5}-\frac{\sqrt{39}}{5}\) or x = \(\frac{2}{5}+\frac{\sqrt{39}}{5}\)

∴ x = \(\frac{2-\sqrt{39}}{5}\) or x = \(\frac{2+\sqrt{39}}{5}\)

Answer is : \(\frac{2-\sqrt{39}}{5}\), \(\frac{2+\sqrt{39}}{5}\) are the roots of the given quadratic equation.

 

Rs 12

-Kitabcd Academy Offer-

Buy Notes(Rs.7)+ Solution(Rs.7) PDF of this chapter
Price : Rs.14 / Rs.12

Click on below button to buy PDF in offer (15% discount)

Useful Links

Main Page : – Maharashtra Board Class 10th-Mathematics  – All chapters notes, solutions, videos, test, pdf.

Previous Chapter : Chapter-1-Linear Equations in Two VariablesOnline Notes

Next Chapter : Chapter-3-Arithmetic ProgressionOnline Notes

Leave a Reply

Write your suggestions, questions in comment box

Your email address will not be published. Required fields are marked *

We reply to valid query.