Solutions-Part-1-Class-10-Mathematics-1-Chapter-1-Linear Equations in Two Variables-Maharashtra Board

Linear Equations in Two Variables

Class-10-Mathematics-1-Chapter-1-Maharashtra Board

Solutions (Practice Set 1.1, 1.2)

Practice Set 1.1

Question 1.

Complete the following activity to solve the simultaneous equations :

5x + 3y = 9  …..(1)

2x - 3y = 12  (2)

Answer :

Let’s add equations (1) and (2)

\(\begin{array}{rrrrrrr}
& 5x & + & 3y & = & 9 &\text{…..(1)}\\
+ & & & & & & \\
& 2x & - & [3y] & = & 12 &\text{…..(2)} \\ \hline
& 7x &  &  & = & 21 & \\
\end{array}\)

x = 3

Place x = 3 in equation …..(1).

5´× [3] + 3y = 9

3y = 9 –[15]

∴ 3y = [-6]

\(∴ y =\frac{-6}{3}\)

∴ y = [-2]

Solution is (x, y) = ([3],[-2])

Question 2.

Solve the following simultaneous equations :

(1) 3a + 5b = 26; a + 5b = 22.

Answer :

3a + 5b = 26  …..(1)

a + 5b = 22  ……(2)

Subtracting equation (2) from equation (1),

\(\begin{array}{rrrrrrr}
& 3a & + & 5b & = & 26 &\text{…..(1)}\\
- & & & & & & \\
&a & + & 5b & = & 22 &\text{…..(2)} \\
-& & -& & &-& \\ \hline
& 2a &  &  & = & 4 & \\
\end{array}\)

∴ a = 2  (Dividing both the sides by 2)

Substituting a = 2 in equation (2),

2 + 5b = 22

 5b = 22 - 2

 5b = 20 \b=20/5

b = 4

Answer (a, b) = (2, 4).

(2) x + 7y = 10; 3x—2y = 7.

Answer :

 x + 7y = 10      …..(1)

3x - 2y = 7        …..(2)

Multiplying equation (1) by 3,

3x + 21y =30    …..(3)

Subtracting equation (2) from equation (3),

\(\begin{array}{rrrrrrr}
& 3x & + & 21y & = & 30 &\text{…..(2)}\\
- & & & & & & \\
&3x& - & 2y & = & 7 &\text{…..(3)} \\
-& & +& & &-& \\ \hline
&  &  & 23y & = & 23 & \\
\end{array}\)

 y = 1      ….. (Dividing both the sides by 23)

Substituting y = 1 in equation (1)

x + 7×(1) = 10

 x + 7 = 10  ∴ x = 10 -7 

x = 3

Answer is (x, y) = (3, 1).

(3) 2x — 3y = 9; 2x + y = 13.

Answer :

2x — 3y = 9    …..(1)

2x + y = 13    ……(2)

Subtracting equation (1) from equation (2),

\(\begin{array}{rrrrrrr}
& 2x & + & y & = & 13 &\text{…..(2)}\\
- & & & & & & \\
&2x& - & 3y & = & 9 &\text{…..(1)} \\
-& & +& & &-& \\ \hline
&  &  & 4y & = & 4 & \\
\end{array}\)

∴ y = 1     … (Dividing both the sides by 4)

Substituting y = 1 in equation (2),

2x + 1 = 13

2x = 13-1;   ∴ 2x = 12 

x = 6

Answer is (x, y) = (6, 1).

(4) 5m - 3n = 19; m - 6n = - 7.

Answer :

5m - 3n = 19     ……(1)

m—6n = - 7       ………(2)

∴ m= - 7 + 6n      …….(3)

Substituting this value of m in equation (1),

5(- 7 + 6n) 3n = 19

- 35 + 30n - 3n = 19

 27n = 19 + 35

 27n = 54

 n = 2      ……..(Dividing both the sides by 27)

Substituting n = 2 in equation (3),

m = - 7 + 6(2)

∴ m = - 7 + 12;   ∴ m = 5

Answer is (m, n) = (5, 2).

(5) 5x + 2y = −3; x + 5y = 4.

Answer :

 5x + 2y = − 3     ……(1)

x + 5y = 4       …….(2)

 x = 4 − 5y      ……..(3)

Substituting this value of x in equation (1),

5(4 − 5y) + 2y = −3

 20 −25y + 2y = −3

− 23y = −3 −20

− 23y =  − 23

 y = 1     ……[Dividing both the sides by (-23)]

Substituting y = 1 in equation (3),

x = 4 − 5(1)

 x = 4 −5 ;       ∴ x = −1

Answer is (x, y) = ( - 1, 1).

(6)  \(\frac{1}{3}x+y=\frac{10}{3}\); \(2x+\frac{1}{4}y=\frac{11}{4}\)

Answer :

\(\frac{1}{3}x+y=\frac{10}{3}\)    ……. (1)

\(2x+\frac{1}{4}y=\frac{11}{4}\)  ……. (2)

Multiplying equation (1) by 3,

x + 3y =10     …….(3)

Multiplying equation (2) by 4,

8x + y = 11      …….(4)

Multiplying equation (4) by 3,

24x + 3y = 33     …….(5)

Subtracting equation (3) from equation (5),

\(\begin{array}{rrrrrrr}
& 24x & + & 3y & = & 33 &\text{…..(5)}\\
- & & & & & & \\
&x& + & 3y & = & 10 &\text{…..(3)} \\
-& & -& & &-& \\ \hline
& 23x &  &  & = & 23 & \\
\end{array}\)

 x = 1      …..(Dividing both the sides by 23)

Substituting x = 1 in equation (3),

1 + 3y = 10;     3y = 10 − 1;  3y = 9

y = 3

Answer is (x, y) = (1, 3).

(7) 99x + 101y = 499; 101x + 99y = 501.

Answer :

 99x + 101y = 499     ……(1)

101x + 99y = 501      ……(2)

Adding equations (1) and (2),

\(\begin{array}{rrrrrrr}
& 99x & + & 101y & = & 499 &\text{…..(1)}\\
+ & & & & & & \\
&101x& + & 99y & = & 501 &\text{…..(2)} \\
& & & & && \\ \hline
& 200x &+ &200y  & = & 1000 & \\
\end{array}\)

 x + y = 5  …. (3)  ….. (Dividing both the sides by 200) 

Subtracting equation (1) from equation (2),

\(\begin{array}{rrrrrrr}
& 101x & + & 99y & = & 501 &\text{…..(2)}\\
- & & & & & & \\
&99x& + & 101y & = & 499 &\text{…..(1)} \\
-& & -& & &-& \\ \hline
& 2x & - &2y  & = & 2 & \\
\end{array}\)

  x −  y =  1    …..(4)    ……. (Dividing both the sides by 2) 

Adding equations (3) and (4),

\(\begin{array}{rrrrrrr}
& x & + & y & = & 5 &\text{…..(3)}\\
+ & & & & & & \\
&x& - & y & = & 1 &\text{…..(4)} \\
& & & & & & \\ \hline
& 2x &  &  & = & 6 & \\
\end{array}\)

x = 3

Substituting x = 3 in equation (3),

3 + y = 5 ∴ y = 5 −3

y = 2

Answer is. (x, y) = (3, 2)

(8) 49x - 57y = 172; 57x — 49y = 252.

Answer :

49x − 57y = 172    …..(1)

57x − 49y = 252     ….(2)

Adding equations (1) and (2),

\(\begin{array}{rrrrrrr}
& 49x & - & 57y & = & 172 &\text{…..(1)}\\
+ & & & & & & \\
&57x& - & 49y & = & 252 &\text{…..(2)} \\
& & & & & & \\ \hline
& 106x &-  &106y  & = & 424 & \\
\end{array}\)

 x − y = 4    ……  (3)   ……(Dividing both the sides by 106)

Subtracting equation (1) from equation (2),

\(\begin{array}{rrrrrrr}
& 57x & - & 49y & = & 252 &\text{…..(2)}\\
- & & & & & & \\
&49x& - & 57y & = & 172 &\text{…..(1)} \\
& -& -& & & -& \\ \hline
& 8x &+  &8y  & = & 80& \\
\end{array}\)

 x + y = 10    ….(4)    …….(Dividing both the sides by 8)

 Adding equations (3) and (4),

x − y = 4    ……..(3)

x + y = 10   …...(4)

2x = 14    …….(Dividing both the sides by 2)

∴ x = 7.

Substituting x = 7 in equation (4),

7 + y = 10

 y = 10 −7 ; ∴ y = 3

Answer is (x, y) = (7, 3)


Practice Set 1.2

Question 1.

 Complete the following table to draw graph of the equations -

(I) x + y = 3   (II) x − y = 4

i) x + y = 3

x 3    
y   5 3
(x, y) (3,0) (    ) (0,3)

ii) x - y = 4

x   −1 0
y 0   −4
(x, y) (   ) (   ) (0,−4)

Answer :

(i) x + y = 3

x 3 −2 0
y 0 5 3
(x, y) (3,0) (−2,5) (0,3)
  (x, y) = (3, 0) and x = 3 ….(Given)

y = 0

Substituting y = 5

x + 5 = 3

x = − 2

(x, y) = (0, 3) and y = 3

 ….(Given)

x = 0

 

(ii) x − y = 4

x 4 −1 0
y 0 −5 −4
(x, y) (4,0) (−1,−5) (0,−4)
  Substituting y = 0

x − 0 = 4

 x = 4

Substituting x = −1

− 1 − y = 4

 y = − 5

 

Question 2.

Solve the following simultaneous equations graphically

(1) x + y = 6 ; x − y = 4

Answer :

x + y = 6 ; ∴ y = 6 − x

x 0 2 3 7
y 6 4 3 −1
(x, y) (0,6) (2,4    ) (3,3) (7,−1)

 

x − y = 4; ∴ y = 4− x

x 0 2 6 7
y −4 −2 2 3
(x, y) (0,−4) (2,−2    ) (6,2) (7,3)

The coordinates of the point of intersection are (5, 1).

Ans- The solution of the given simultaneous equations is x = 5, y = 1.

(2) x + y = 5 ; x − y = 3

Answer :

x + y = 5;  y = 5 −x

x 0 2 4 6
y 5 3 1 −1
(x, y) (0,5) (2,3 ) (4,1) (6,−1)

 

x - y = 3 ;  ∴ y = x − 3

x 0 1 3 5
y −3 −2 0 2
(x, y) (0,−3) (1,−2 ) (3,0) (5,2)

The coordinates of the point of intersection are (4, 1).

Ans- The solution of the given simultaneous equations is x = 4, y = 1.

(3) x + y = 0 ; 2x − y = 9

Answer :

x + y = 0  ∴ y = −x

x −1 0 2 4
y 1 0 −2 −4
(x, y) (−1,1) (0,0 ) (2,−2) (4,−4)

 2x − y = 9  y = 2x − 9

x −1 0 4 5
y −11 −9 −1 1
(x, y) (−1,−11) (0,−9 ) (4,1) (5,1)

The coordinates of the point of intersection are (3, −3).

Ans- The solution of the given simultaneous equations is x = 3, y = −3.

(4) 3x − y = 2 ; 2x − y = 3

Answer :

3x − y = 2 y = 3x − 2

x −2 0 1 3
y −8 −2 1 7
(x, y) (−2,−8) (0,−2 ) (1,1) (3,7)

 2x − y = 3y = 2x −3

x −2 0 1 3
y −7 −3 −1 3
(x, y) (−2,−7) (0,−3 ) (1,−1) (3,3)

The coordinates of the point of intersection are (−1, −5).

Ans- The solution of the given simultaneous equations is x = −1, y = −5.

(5) 3x − 4y = −7 ;  5x − 2y = 0

Answer :

3x − 4y = −7  y = \(\frac{3x+7}{4}\)

x −1 1 3 5
y 1 2.5 4 5.5
(x, y) (−1,1) (1,2.5 ) (3,4) (5,5.5)

 5x − 2y = 0  ∴ y = \(\frac{5x}{2}\)

x −2 0 1 2
y −5 0 2.5 5
(x, y) (−2,−5) (0,0 ) (1,2.5) (2,5)

The coordinates of the point of intersection are (1, 2.5).

Ans- The solution of the given simultaneous equations is x = 1, y = 2.5.

(6) 2x − 3y = 4 ;  3y − x = 4

Answer :

2x −3y = 4  y = \(\frac{2x-4}{3}\)

x −1 2 5 8
y −2 0 2 4
(x, y) (−1,−2) (2,0 ) (5,2) (8,4)

3y − x = 4  y = \(\frac{4+x}{3}\)

x −4 −1 2 5
y −0 1 2 3
(x, y) (−4,0) (−1,1 ) (2,2) (5,3)

The coordinates of the point of intersection are (8, 4).

Ans- The solution of the given simultaneous equations is x = 8, y = 4.

Next Part ->>

Rs 12

-Kitabcd Academy Offer-

Buy Notes(Rs.7)+ Solution(Rs.7) PDF of this chapter
Price : Rs.14 / Rs.12

Click on below button to buy PDF in offer (15% discount)

Useful Links

Main Page : – Maharashtra Board Class 10th-Mathematics  – All chapters notes, solutions, videos, test, pdf.

Next Chapter : Chapter-2-Quadratic equationOnline Solutions

Leave a Reply

Write your suggestions, questions in comment box

Your email address will not be published. Required fields are marked *

We reply to valid query.